If it's not what You are looking for type in the equation solver your own equation and let us solve it.
24x^2+40x+6=0
a = 24; b = 40; c = +6;
Δ = b2-4ac
Δ = 402-4·24·6
Δ = 1024
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1024}=32$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(40)-32}{2*24}=\frac{-72}{48} =-1+1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(40)+32}{2*24}=\frac{-8}{48} =-1/6 $
| h/7=28/3 | | 2n+8=7n-10 | | -16x+4-3(x-1)=-3x-(15x-1)+3 | | 3x^2-12/1-x^2=0 | | -x^+5-6=0 | | 10+x=11-x | | 2(18-x)=7x+0 | | 5x^-10=0 | | 2/(v-6)=3 | | 2x^2-15+25=0 | | X+2y=2400 | | -0.10(90)+0.85x=0.05(x-20) | | 3x+2x-x=3 | | x+4=-3x-17/2 | | 18=1.08(t/27) | | 3^1*3^-3=x | | b-30=-60 | | x+4=(-3x-17)2 | | Z2+4z+16=0 | | 3^1x3^-3=x | | 8k+4=3k+19 | | 3^0=n | | 3x+60=84-5x | | (z+3)^4=-324 | | m-3=-(2m+7) | | 2k^2-6k=0 | | m-3=-2m-7 | | 4x+26=2x+20 | | -16=3(6h)+5 | | -x-4,8=1,2 | | 4n+7-4n=5 | | 2x2−7x−6=0 |